Convergence and Error Analysis of Compressible Fluid Flows with Random Data: Monte Carlo Method

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)
dc.bibliographicCitation.volume15
dc.contributor.authorFeireisl, Eduard
dc.contributor.authorLukáčova-Medviďová, Mariá
dc.contributor.authorShe, Bangwei
dc.contributor.authorYuan, Yuhuan
dc.date.accessioned2024-10-17T05:34:10Z
dc.date.available2024-10-17T05:34:10Z
dc.date.issued2022
dc.description.abstractThe goal of this paper is to study convergence and error estimates of the Monte Carlo method for the Navier-Stokes equations with random data. To discretize in space and time, the Monte Carlo method is combined with a suitable deterministic discretization scheme, such as a fnite volume method. We assume that the initial data, force and the viscosity coefficients are random variables and study both, the statistical convergence rates as well as the approximation errors. Since the compressible Navier-Stokes equations are not known to be uniquely solvable in the class of global weak solutions, we cannot apply pathwise arguments to analyze the random Navier-Stokes equations. Instead we have to apply intrinsic stochastic compactness arguments via the Skorokhod representation theorem and the Gyöngy-Krylov method. Assuming that the numerical solutions are bounded in probability, we prove that the Monte Carlo fnite volume method converges to a statistical strong solution. The convergence rates are discussed as well. Numerical experiments illustrate theoretical results.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16964
dc.identifier.urihttps://doi.org/10.34657/15986
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2022-15
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subjectUncertainty quantification
dc.subjectRandom viscous compressible flows
dc.subjectStatistical solutions
dc.subjectMonte Carlo method
dc.subjectFinite volume method
dc.subjectDeterministic and statistical convergence rates
dc.subject.ddc510
dc.titleConvergence and Error Analysis of Compressible Fluid Flows with Random Data: Monte Carlo Method
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2022_15.pdf
Size:
2.91 MB
Format:
Adobe Portable Document Format
Description: