The Magic Square of Reflections and Rotations

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume13
dc.contributor.authorBuchweitz, Ragnar-Olaf
dc.contributor.authorFaber, Eleonore
dc.contributor.authorIngalls, Colin
dc.date.accessioned2024-10-16T15:05:23Z
dc.date.available2024-10-16T15:05:23Z
dc.date.issued2018
dc.description.abstractWe show how Coxeter's work implies a bijection between complex reflection groups of rank two and real reflection groups in 0(3). We also consider this magic square of reflections and rotations in the framework of Clifford algebras: we give an interpretation using (s)pin groups and explore these groups in small dimensions.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16875
dc.identifier.urihttps://doi.org/10.34657/15897
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2018-13
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.subject.otherFinite reflection groupseng
dc.subject.otherClifford algebraseng
dc.subject.otherQuaternionseng
dc.subject.otherPin groupseng
dc.subject.otherMcKay correspondenceeng
dc.titleThe Magic Square of Reflections and Rotations
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2018_13.pdf
Size:
355.8 KB
Format:
Adobe Portable Document Format
Description: