Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis

dc.bibliographicCitation.firstPagee58371
dc.bibliographicCitation.journalTitleeLifeeng
dc.bibliographicCitation.volume10
dc.contributor.authorHinzke, Tjorven
dc.contributor.authorKleiner, Manuel
dc.contributor.authorMeister, Mareike
dc.contributor.authorSchlüter, Rabea
dc.contributor.authorHentschker, Christian
dc.contributor.authorPané-Farré, Jan
dc.contributor.authorHildebrandt, Petra
dc.contributor.authorFelbeck, Horst
dc.contributor.authorSievert, Stefan M
dc.contributor.authorBonn, Florian
dc.contributor.authorVölker, Uwe
dc.contributor.authorBecher, Dörte
dc.contributor.authorSchweder, Thomas
dc.contributor.authorMarkert, Stephanie
dc.date.accessioned2023-04-17T06:37:45Z
dc.date.available2023-04-17T06:37:45Z
dc.date.issued2021
dc.description.abstractThe hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11955
dc.identifier.urihttp://dx.doi.org/10.34657/10988
dc.language.isoeng
dc.publisherCambridge : eLife Sciences Publications
dc.relation.doihttps://doi.org/10.7554/eLife.58371
dc.relation.essn2050-084X
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc500
dc.subject.ddc600
dc.subject.ddc570
dc.subject.otherbiomass productioneng
dc.subject.othercarbon fixationeng
dc.subject.othercell sizeeng
dc.subject.otherdeep seaeng
dc.subject.otherdensity gradient centrifugationeng
dc.subject.otherendoreduplicationeng
dc.subject.otherflow cytometryeng
dc.subject.otherhost interactioneng
dc.subject.otherhuman celleng
dc.subject.othermicroscopyeng
dc.subject.othernonhumaneng
dc.subject.otherproductivityeng
dc.subject.othersymbionteng
dc.subject.otheranimaleng
dc.subject.otherbacterial phenomena and functionseng
dc.subject.otherbacteriumeng
dc.subject.otherhydrothermal venteng
dc.subject.otherisolation and purificationeng
dc.subject.othermicrobiologyeng
dc.subject.otherPolychaetaeng
dc.subject.othersymbiosiseng
dc.titleBacterial symbiont subpopulations have different roles in a deep-sea symbiosiseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorINP
wgl.subjectBiowissenschaften/Biologieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
elife-58371-v1.pdf
Size:
10.51 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
elife-58371-figures-v1.pdf
Size:
14.66 MB
Format:
Adobe Portable Document Format
Description: