Homology and K-Theory of Torsion-Free Ample Groupoids and Smale Spaces

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)
dc.bibliographicCitation.volume20
dc.contributor.authorProietti, Valerio
dc.contributor.authorYamashita, Makoto
dc.date.accessioned2024-10-16T16:53:57Z
dc.date.available2024-10-16T16:53:57Z
dc.date.issued2020
dc.description.abstractGiven an ample groupoid, we construct a spectral sequence with groupoid homology with integer coefficients on the second sheet, converging to the K-groups of the groupoid C*-algebra when the groupoid has torsion-free stabilizers and satisfies the strong Baum–Connes conjecture. The construction is based on the triangulated category approach to the Baum–Connes conjecture by Meyer and Nest. For the unstable equivalence relation of a Smale space with totally disconnected stable sets, this spectral sequence shows Putnam's homology groups on the second sheet.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16937
dc.identifier.urihttps://doi.org/10.34657/15959
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2020-20
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.subject.otherGroupoid
dc.subject.otherC*-algebra
dc.subject.otherK-theory
dc.subject.otherHomology
dc.subject.otherBaum-Connes conjecture
dc.subject.otherSmale space
dc.titleHomology and K-Theory of Torsion-Free Ample Groupoids and Smale Spaces
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2020_20.pdf
Size:
887.79 KB
Format:
Adobe Portable Document Format
Description: