Spectral Continuity for Aperiodic Quantum Systems II. Periodic Approximations in 1D

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume27
dc.contributor.authorBeckus, Siegfried
dc.contributor.authorBellissard, Jean
dc.contributor.authorDe Nittis, Giuseppe
dc.date.accessioned2024-10-16T15:05:25Z
dc.date.available2024-10-16T15:05:25Z
dc.date.issued2018
dc.description.abstractThe existence and construction of periodic approximations with convergent spectra is crucial in solid state physics for the spectral study of corresponding Schrödinger operators. In a forthcoming work [9] this task was boiled down to the existence and construction of periodic approximations of the underlying dynamical systems in the Hausdorff topology. As a result the one-dimensional systems admitting such approximations are completely classified in the present work. In addition explicit constructions are provided for dynamical systems defined by primitive substitutions covering all studied examples such as the Fibonacci sequence or the Golay-Rudin-Shapiro sequence. One main tool is the description of the Hausdorff topology by the local pattern topology on the dictionaries as well as the GAP-graphs describing the local structure. The connection of branching vertices in the GAP-graphs and defects is discussed.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16890
dc.identifier.urihttps://doi.org/10.34657/15912
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2018-27
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.subject.otherPeriodic approximationseng
dc.subject.otherDynamical systemeng
dc.subject.otherSpectrumeng
dc.subject.otherSchrödinger operatorseng
dc.titleSpectral Continuity for Aperiodic Quantum Systems II. Periodic Approximations in 1D
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2018_27.pdf
Size:
570.46 KB
Format:
Adobe Portable Document Format
Description: