The Martin Boundary of Relatively Hyperbolic Groups with Virtually Abelian Parabolic Subgroups

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume3
dc.contributor.authorDussaule, Mattieu
dc.contributor.authorGekhtman, Ilya
dc.contributor.authorGerasimov, Victor
dc.contributor.authorPotyagailo, Leonid
dc.date.accessioned2024-10-16T15:05:24Z
dc.date.available2024-10-16T15:05:24Z
dc.date.issued2018
dc.description.abstractGiven a probability measure on a finitely generated group, its Martin boundary is a way to compactify the group using the Green's function of the corresponding random walk. We give a complete topological characterization of the Martin boundary of finitely supported random walks on relatively hyperbolic groups with virtually abelian parabolic subgroups. In particular, in the case of nonuniform lattices in the real hyperbolic space Hⁿ, we show that the Martin boundary coincides with the CAT(0) boundary of the truncated space, and thus when n = 3, is homeomorphic to the Sierpinski carpet.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16883
dc.identifier.urihttps://doi.org/10.34657/15905
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2018-03
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.titleThe Martin Boundary of Relatively Hyperbolic Groups with Virtually Abelian Parabolic Subgroups
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2018_03.pdf
Size:
466.4 KB
Format:
Adobe Portable Document Format
Description: