Root Cycles in Coxeter Groups

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)
dc.bibliographicCitation.volume16
dc.contributor.authorHart, Sarah
dc.contributor.authorKelsey, Veronica
dc.contributor.authorRowley, Peter
dc.date.accessioned2024-10-17T05:34:10Z
dc.date.available2024-10-17T05:34:10Z
dc.date.issued2022
dc.description.abstractFor an element w of a Coxeter group W there are two important attributes, namely its length, and its expression as a product of disjoint cycles in its action on Φ, the root system of W. This paper investigates the interaction between these two features of w, introducing the notion of the crossing number of w, κ(w). Writing w=c1⋯cr as a product of disjoint cycles we associate to each cycle ci a `crossing number' κ(ci), which is the number of positive roots α in ci for which w⋅α is negative. Let Seqk(w) be the sequence of κ(ci) written in increasing order, and let κ(w) = max Seqk(w). The length of w can be retrieved from this sequence, but Seqk(w) provides much more information. For a conjugacy class X of W let kmin(X)=min{κ(w)|w∈X} and let κ(W) be the maximum value of kmin across all conjugacy classes of W. We call κ(w) and κ(W), respectively, the crossing numbers of w and W. Here we determine the crossing numbers of all finite Coxeter groups and of all universal Coxeter groups. We also show, among other things, that for finite irreducible Coxeter groups if u and v are two elements of minimal length in the same conjugacy class X, then Seqk(u) = Seqk(v) and kmin(X)=κ(u)=κ(v). Also it is shown that the crossing number of an arbitrary Coxeter group is bounded below by the crossing number of a standard parabolic subgroup. Finally, examples are given to show that crossing numbers can be arbitrarily large for finite and infinite irreducible Coxeter groups.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16965
dc.identifier.urihttps://doi.org/10.34657/15987
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2022-16
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subjectCoxeter groups
dc.subjectRoot system
dc.subjectRoot cycles
dc.subjectLength function
dc.subject.ddc510
dc.titleRoot Cycles in Coxeter Groups
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2022_16.pdf
Size:
480.25 KB
Format:
Adobe Portable Document Format
Description: