Combinatorial considerations on the invariant measure of a stochastic matrix

Loading...
Thumbnail Image
Date
2019
Volume
2627
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract

The invariant measure is a fundamental object in the theory of Markov processes. In finite dimensions a Markov process is defined by transition rates of the corresponding stochastic matrix. The Markov tree theorem provides an explicit representation of the invariant measure of a stochastic matrix. In this note, we given a simple and purely combinatorial proof of the Markov tree theorem. In the symmetric case of detailed balance, the statement and the proof simplifies even more.

Description
Keywords
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.