Mini-Workshop: Interpolation and Over-parameterization in Statistics and Machine Learning

dc.bibliographicCitation.journalTitleOberwolfach reports : OWR
dc.bibliographicCitation.volume41
dc.contributor.otherBelkin, Mikhail
dc.contributor.otherTsybakov, Alexandre
dc.contributor.otherYang, Fanny
dc.date.accessioned2024-10-18T08:29:03Z
dc.date.available2024-10-18T08:29:03Z
dc.date.issued2023
dc.description.abstractIn recent years it has become clear that, contrary to traditional statistical beliefs, methods that interpolate (fit exactly) the noisy training data, can still be statistically optimal. In particular, this phenomenon of "benign overfitting'' or "harmless interpolation'' seems to be close to the practical regimes of modern deep learning systems, and, arguably, underlies many of their behaviors. This workshop brought together experts on the emerging theory of interpolation in statistical methods, its theoretical foundations and applications to machine learning and deep learning.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/17070
dc.identifier.urihttps://doi.org/10.34657/16092
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWR-2023-41
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.subject.gndKonferenzschrift
dc.titleMini-Workshop: Interpolation and Over-parameterization in Statistics and Machine Learning
dc.typeArticle
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2023_41.pdf
Size:
173.3 KB
Format:
Adobe Portable Document Format
Description: