Computationally and Statistically Efficient Inference for Complex Large-scale Data

dc.bibliographicCitation.firstPage741
dc.bibliographicCitation.lastPage796
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume16
dc.contributor.otherMeinshausen, Nicolai
dc.contributor.otherSamworth, Richard
dc.contributor.otherYuan, Ming
dc.date.accessioned2023-12-15T09:35:05Z
dc.date.available2023-12-15T09:35:05Z
dc.date.issued2016
dc.description.abstractThe aim of the highly successful workshop Computationally and statistically efficient inference for large-scale and heterogeneous data was to foster dissemination and collaboration between researchers in the area of highdimensional and large-scale data analysis. The field has grown tremendously over the last decade. Faced with ever larger data sets, many algorithms have emerged in computer science, machine learning and statistics that allow computationally efficient manipulation and model fitting on large datasets. Yet the mathematical and statistical properties of these algorithms are only just beginning to be understood. Advancing the field is important to avoid many misleading scientific discoveries based on pure data manipulation without the accompanying mathematical insights. The talks and discussions at the workshop covered the latest advances from optimization to statistical error control for large-scale data analysis.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/13228
dc.identifier.urihttps://doi.org/10.34657/12258
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2016-16
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleComputationally and Statistically Efficient Inference for Complex Large-scale Dataeng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventWorkshop Computationally and Statistically Efficient Inference for Complex Large-scale Data, 06 Mar - 12 Mar 2016, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2016_16.pdf
Size:
480.78 KB
Format:
Adobe Portable Document Format
Description: