Mixed integer reformulations of integer programs and the affine TU-dimension of a matrix

No Thumbnail Available
Date
2015
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Cambridge : arXiv
Link to publishers version
Abstract

We study the reformulation of integer linear programs by means of a mixed integer linear program with fewer integer variables. Such reformulations can be solved efficiently with mixed integer linear programming techniques. We exhibit a variety of examples that demonstrate how integer programs can be reformulated using far fewer integer variables. To this end, we introduce a generalization of total unimodularity called the affine TU-dimension of a matrix and study related theory and algorithms for determining the affine TU-dimension of a matrix.We also present bounds on the number of integer variables needed to represent certain integer hulls. Moreover, we introduce a generalization of Total Dual Integrality of a linear inequality system and study related theory. This allows us to prove integrality of solutions to linear inequality systems under additional integrality constraints.

Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.