De novo rational design of a freestanding, supercharged polypeptide, proton-conducting membrane

Loading...
Thumbnail Image
Date
2020
Volume
6
Issue
29
Journal
Science Advances 6 (2020), Nr. 29
Series Titel
Book Title
Publisher
Washington : American Association for the Advancement of Science (A A A S)
Link to publishers version
Abstract

Proton translocation enables important processes in nature and man-made technologies. However, controlling proton conduction and fabrication of devices exploiting biomaterials remains a challenge. Even more difficult is the design of protein-based bulk materials without any functional starting scaffold for further optimization. Here, we show the rational design of proton-conducting, protein materials exceeding reported proteinaceous systems. The carboxylic acid-rich structures were evolved step by step by exploring various sequences from intrinsically disordered coils over supercharged nanobarrels to hierarchically spider β sheet containing protein-supercharged polypeptide chimeras. The latter material is characterized by interconnected β sheet nanodomains decorated on their surface by carboxylic acid groups, forming self-supportive membranes and allowing for proton conduction in the hydrated state. The membranes showed an extraordinary proton conductivity of 18.5 ± 5 mS/cm at RH = 90%, one magnitude higher than other protein devices. This design paradigm offers great potential for bioprotonic device fabrication interfacing artificial and biological systems. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Description
Keywords
Citation
Ma, C., Dong, J., Viviani, M., Tulini, I., Pontillo, N., Maity, S., et al. (2020). De novo rational design of a freestanding, supercharged polypeptide, proton-conducting membrane (Washington : American Association for the Advancement of Science (A A A S)). Washington : American Association for the Advancement of Science (A A A S). https://doi.org//10.1126/sciadv.abc0810
License
CC BY-NC 4.0 Unported