Low rank differential equations for Hamiltonian matrix nearness problems

Loading...
Thumbnail Image

Date

Volume

2013-01

Issue

Journal

Series Titel

Oberwolfach Preprints (OWP)

Book Title

Publisher

Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach

Link to publishers version

Abstract

For a Hamiltonian matrix with purely imaginary eigenvalues, we aim to determine the nearest Hamiltonian matrix such that some or all eigenvalues leave the imaginary axis. Conversely, for a Hamiltonian matrix with all eigenvalues lying off the imaginary axis, we look for a nearest Hamiltonian matrix that has a pair of imaginary eigenvalues. The Hamiltonian matrices can be allowed to be complex or restricted to be real. Such Hamiltonian matrix nearness problems are motivated by applications such as the analysis of passive control systems. They are closely related to the problem of determining extremal points of Hamiltonian pseudospectra. We obtain a characterization of optimal perturbations, which turn out to be of low rank and are attractive stationary points of low-rank differential equations that we derive. This permits us to give fast algorithms - which show quadratic convergence - for solving the considered Hamiltonian matrix nearness problems.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.