Object detection networks and augmented reality for cellular detection in fluorescence microscopy

dc.bibliographicCitation.firstPagee201903166eng
dc.bibliographicCitation.issue10eng
dc.bibliographicCitation.journalTitleThe journal of cell biology : JCBeng
dc.bibliographicCitation.volume219eng
dc.contributor.authorWaithe, Dominic
dc.contributor.authorBrown, Jill M.
dc.contributor.authorReglinski, Katharina
dc.contributor.authorDiez-Sevilla, Isabel
dc.contributor.authorRoberts, David
dc.contributor.authorEggeling, Christian
dc.date.accessioned2021-11-05T10:40:31Z
dc.date.available2021-11-05T10:40:31Z
dc.date.issued2020
dc.description.abstractObject detection networks are high-performance algorithms famously applied to the task of identifying and localizing objects in photography images. We demonstrate their application for the classification and localization of cells in fluorescence microscopy by benchmarking four leading object detection algorithms across multiple challenging 2D microscopy datasets. Furthermore we develop and demonstrate an algorithm that can localize and image cells in 3D, in close to real time, at the microscope using widely available and inexpensive hardware. Furthermore, we exploit the fast processing of these networks and develop a simple and effective augmented reality (AR) system for fluorescence microscopy systems using a display screen and back-projection onto the eyepiece. We show that it is possible to achieve very high classification accuracy using datasets with as few as 26 images present. Using our approach, it is possible for relatively nonskilled users to automate detection of cell classes with a variety of appearances and enable new avenues for automation of fluorescence microscopy acquisition pipelines. © 2020 Waithe et al.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7190
dc.identifier.urihttps://doi.org/10.34657/6237
dc.language.isoengeng
dc.publisherNew York, NY : Rockefeller Univ. Presseng
dc.relation.doihttps://doi.org/10.1083/JCB.201903166
dc.relation.essn1540-8140
dc.rights.licenseCC BY-NC-SA 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/eng
dc.subject.ddc570eng
dc.subject.otheraugmented realityeng
dc.subject.otherautomationeng
dc.subject.otherbenchmarkingeng
dc.subject.othercellular distributioneng
dc.subject.otherfluorescence microscopyeng
dc.subject.otherhumaneng
dc.subject.otherhuman celleng
dc.subject.otherlive cell imagingeng
dc.subject.otherpriority journaleng
dc.subject.othersingle cell analysiseng
dc.subject.otherthree-dimensional imagingeng
dc.subject.othertwo-dimensional imagingeng
dc.titleObject detection networks and augmented reality for cellular detection in fluorescence microscopyeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPHTeng
wgl.subjectBiowissensschaften/Biologieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Object detection networks and augmented reality for cellular detection in fluorescence microscopy.pdf
Size:
4.49 MB
Format:
Adobe Portable Document Format
Description: