Sparse Recovery Problems in High Dimensions: Statistical Inference and Learning Theory
dc.bibliographicCitation.firstPage | 867 | |
dc.bibliographicCitation.lastPage | 916 | |
dc.bibliographicCitation.seriesTitle | Oberwolfach reports : OWR | eng |
dc.bibliographicCitation.volume | 16 | |
dc.contributor.other | Koltchinskii, Vladimir | |
dc.contributor.other | Tsybakov, Alexandre | |
dc.contributor.other | van de Geer, Sara | |
dc.date.accessioned | 2023-12-14T13:51:42Z | |
dc.date.available | 2023-12-14T13:51:42Z | |
dc.date.issued | 2009 | |
dc.description.abstract | The statistical analysis of high dimensional data requires new techniques, extending results from nonparametric statistics, analysis, probability, approximation theory, and theoretical computer science. The main problem is how to unveil, (or to mimic performance of) sparse models for the data. Sparsity is generally meant in terms of the number of variables included, but may also be described in terms of smoothness, entropy, or geometric structures. A key objective is to adapt to unknown sparsity, yet keeping computational feasibility. | eng |
dc.description.version | publishedVersion | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/12824 | |
dc.identifier.uri | https://doi.org/10.34657/11854 | |
dc.language.iso | eng | |
dc.publisher | Zürich : EMS Publ. House | eng |
dc.relation.doi | https://doi.org/10.14760/OWR-2009-16 | |
dc.relation.essn | 1660-8941 | |
dc.relation.issn | 1660-8933 | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.subject.ddc | 510 | |
dc.subject.gnd | Konferenzschrift | ger |
dc.title | Sparse Recovery Problems in High Dimensions: Statistical Inference and Learning Theory | eng |
dc.type | Article | eng |
dc.type | Text | eng |
dcterms.event | Workshop Sparse Recovery Problems in High Dimensions: Statistical Inference and Learning Theory, 15 Mar - 21 Mar 2009, Oberwolfach | |
tib.accessRights | openAccess | |
wgl.contributor | MFO | |
wgl.subject | Mathematik | |
wgl.type | Zeitschriftenartikel |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWR_2009_16.pdf
- Size:
- 475.11 KB
- Format:
- Adobe Portable Document Format
- Description: