Sparse Recovery Problems in High Dimensions: Statistical Inference and Learning Theory

dc.bibliographicCitation.firstPage867
dc.bibliographicCitation.lastPage916
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume16
dc.contributor.otherKoltchinskii, Vladimir
dc.contributor.otherTsybakov, Alexandre
dc.contributor.othervan de Geer, Sara
dc.date.accessioned2023-12-14T13:51:42Z
dc.date.available2023-12-14T13:51:42Z
dc.date.issued2009
dc.description.abstractThe statistical analysis of high dimensional data requires new techniques, extending results from nonparametric statistics, analysis, probability, approximation theory, and theoretical computer science. The main problem is how to unveil, (or to mimic performance of) sparse models for the data. Sparsity is generally meant in terms of the number of variables included, but may also be described in terms of smoothness, entropy, or geometric structures. A key objective is to adapt to unknown sparsity, yet keeping computational feasibility.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/12824
dc.identifier.urihttps://doi.org/10.34657/11854
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2009-16
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleSparse Recovery Problems in High Dimensions: Statistical Inference and Learning Theoryeng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventWorkshop Sparse Recovery Problems in High Dimensions: Statistical Inference and Learning Theory, 15 Mar - 21 Mar 2009, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2009_16.pdf
Size:
475.11 KB
Format:
Adobe Portable Document Format
Description: