Cobalt-based Co3Mo3N/Co4N/Co Metallic Heterostructure as a Highly Active Electrocatalyst for Alkaline Overall Water Splitting

dc.bibliographicCitation.articleNumbere202319239
dc.bibliographicCitation.firstPagee202319239
dc.bibliographicCitation.issue14
dc.bibliographicCitation.volume63
dc.contributor.authorLiu, Yuanwu
dc.contributor.authorWang, Lirong
dc.contributor.authorHübner, René
dc.contributor.authorKresse, Johannes
dc.contributor.authorZhang, Xiaoming
dc.contributor.authorDeconinick, Marielle
dc.contributor.authorVaynzof, Yana
dc.contributor.authorWeidinger, Inez M.
dc.contributor.authorEychmüller, Alexander
dc.date.accessioned2024-04-15T06:42:04Z
dc.date.available2024-04-15T06:42:04Z
dc.date.issued2024
dc.description.abstractAlkaline water electrolysis holds promise for large-scale hydrogen production, yet it encounters challenges like high voltage and limited stability at higher current densities, primarily due to inefficient electron transport kinetics. Herein, a novel cobalt-based metallic heterostructure (Co3Mo3N/Co4N/Co) is designed for excellent water electrolysis. In operando Raman experiments reveal that the formation of the Co3Mo3N/Co4N heterointerface boosts the free water adsorption and dissociation, increasing the available protons for subsequent hydrogen production. Furthermore, the altered electronic structure of the Co3Mo3N/Co4N heterointerface optimizes ΔGH of the nitrogen atoms at the interface. This synergistic effect between interfacial nitrogen atoms and metal phase cobalt creates highly efficient active sites for the hydrogen evolution reaction (HER), thereby enhancing the overall HER performance. Additionally, the heterostructure exhibits a rapid OH− adsorption rate, coupled with great adsorption strength, leading to improved oxygen evolution reaction (OER) performance. Crucially, the metallic heterojunction accelerates electron transport, expediting the afore-mentioned reaction steps and enhancing water splitting efficiency. The Co3Mo3N/Co4N/Co electrocatalyst in the water electrolyzer delivers excellent performance, with a low 1.58 V cell voltage at 10 mA cm−2, and maintains 100 % retention over 100 hours at 200 mA cm−2, surpassing the Pt/Ceng
dc.description.abstractRuO2 electrolyzer.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/14532
dc.identifier.urihttps://doi.org/10.34657/13563
dc.language.isoeng
dc.publisherWeinheim : Wiley-VCH
dc.relation.doihttps://doi.org/10.1002/anie.202319239
dc.relation.essn1521-3773
dc.relation.ispartofseriesAngewandte Chemie International Edition 63 (2024), Nr. 14
dc.relation.issn1433-7851
dc.rights.licenseCC BY-NC-ND 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectalkaline water splittingeng
dc.subjectinterfacial water evolutioneng
dc.subjectmetallic heterostructureeng
dc.subjectoptimized active heterointerfaceeng
dc.subject.ddc540
dc.titleCobalt-based Co3Mo3N/Co4N/Co Metallic Heterostructure as a Highly Active Electrocatalyst for Alkaline Overall Water Splittingeng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleAngewandte Chemie International Edition
tib.accessRightsopenAccess
wgl.contributorIFWD
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cobalt‐based-Co3Mo3N-Co4N-Co-Metallic.pdf
Size:
2.44 MB
Format:
Adobe Portable Document Format
Description:
Collections