Reconstruction of Ultra-thin Alveolar-capillary Basement Membrane Mimics

dc.bibliographicCitation.firstPage2000427eng
dc.bibliographicCitation.issue8eng
dc.bibliographicCitation.journalTitleAdvanced Biologyeng
dc.bibliographicCitation.volume5eng
dc.contributor.authorJain, Puja
dc.contributor.authorNishiguchi, Akihiro
dc.contributor.authorLinz, Georg
dc.contributor.authorWessling, Matthias
dc.contributor.authorLudwig, Andreas
dc.contributor.authorRossaint, Rolf
dc.contributor.authorMöller, Martin
dc.contributor.authorSingh, Smriti
dc.date.accessioned2021-11-25T06:46:00Z
dc.date.available2021-11-25T06:46:00Z
dc.date.issued2021
dc.description.abstractAlveolar-capillary basement membrane (BM) is ultra-thin (<2 µm) extracellular matrix that maintains integral epithelial-endothelial cell layers. In vitro reconstructions of alveolar-capillary barrier supported on synthetic scaffolds closely resembling the fibrous and ultra-thin natural BM are essential in mimicking the lung pathophysiology. Although BM topology and dimensions are well known to significantly influence cellular behavior, conventionally used BM mimics fail to recreate this natural niche. To overcome this, electrospun ultra-thin 2 µm poly(caprolactone) (PCL) nanofibrous mesh is used to establish an alveolar-capillary barrier model of lung endothelial/epithelial cells. Transepithelial electrical resistance (TEER) and permeability studies reveal integral tight junctions and improved mass transport through the highly porous PCL meshes compared to conventional dense membranes with etched pores. The chemotaxis of neutrophils is shown across the barrier in presence of inflammatory response that is naturally impeded in confined regions. Conventional requirement of 3 µm or larger pore size can lead to barrier disruption due to epithelial/endothelial cell invasion. Despite high porosity, the interconnected BM mimic prevents barrier disruption and allows neutrophil transmigration, thereby demonstrating the physiological relevance of the thin nanofibrous meshes. It is envisioned that these bipolar cultured barriers would contribute to an organ-level in vitro model for pathological disease, environmental pollutants, and nanotoxicology. © 2021 The Authors. Advanced Biology published by Wiley-VCH GmbHeng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7462
dc.identifier.urihttps://doi.org/10.34657/6509
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCHeng
dc.relation.doihttps://doi.org/10.1002/adbi.202000427
dc.relation.essn2366-7478
dc.relation.essn2701-0198
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subject.ddc570eng
dc.subject.other3D modelseng
dc.subject.otherbipolar cultureseng
dc.subject.otherelectrospinningeng
dc.subject.otherlungeng
dc.subject.otherneutrophil migrationeng
dc.titleReconstruction of Ultra-thin Alveolar-capillary Basement Membrane Mimicseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorDWIeng
wgl.subjectBiowissensschaften/Biologieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
adbi.202000427.pdf
Size:
3.21 MB
Format:
Adobe Portable Document Format
Description: