On the Enumeration of Finite L-Algebras
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | |
dc.bibliographicCitation.volume | 11 | |
dc.contributor.author | Dietzel, Carsten | |
dc.contributor.author | Menchón, Paula | |
dc.contributor.author | Vendramin, Leandro | |
dc.date.accessioned | 2024-10-17T05:34:09Z | |
dc.date.available | 2024-10-17T05:34:09Z | |
dc.date.issued | 2022 | |
dc.description.abstract | We use Constraint Satisfaction Methods to construct and enumerate finite L-algebras up to isomorphism. These objects were recently introduced by Rump and appear in Garside theory, algebraic logic, and the study of the combinatorial Yang-Baxter equation. There are 377322225 isomorphism classes of L-algebras of size eight. The database constructed suggest the existence of bijections between certain classes of L-algebras and well-known combinatorial objects. On the one hand, we prove that Bell numbers enumerate isomorphism classes of finite linear L-algebras. On the other hand, we also prove that finite regular L-algebras are in bijective correspondence with infinite-dimensional Young diagrams. | |
dc.description.version | publishedVersion | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/16960 | |
dc.identifier.uri | https://doi.org/10.34657/15982 | |
dc.language.iso | eng | |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | |
dc.relation.doi | https://doi.org/10.14760/OWP-2022-11 | |
dc.relation.issn | 1864-7596 | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | |
dc.subject.ddc | 510 | |
dc.title | On the Enumeration of Finite L-Algebras | |
dc.type | Report | |
dc.type | Text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2022_11.pdf
- Size:
- 547.77 KB
- Format:
- Adobe Portable Document Format
- Description: