Assessment of Stability in Partitional Clustering Using Resampling Techniques

dc.bibliographicCitation.firstPage21eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.journalTitleArchives of data science - Series Aeng
dc.bibliographicCitation.lastPage39eng
dc.bibliographicCitation.volume1eng
dc.contributor.authorMucha, Hans-Joachim
dc.date.accessioned2022-07-15T09:23:51Z
dc.date.available2022-07-15T09:23:51Z
dc.date.issued2016
dc.description.abstractThe assessment of stability in cluster analysis is strongly related to the main difficult problem of determining the number of clusters present in the data. The latter is subject of many investigations and papers considering different resampling techniques as practical tools. In this paper, we consider non-parametric resampling from the empirical distribution of a given dataset in order to investigate the stability of results of partitional clustering. In detail, we investigate here only the very popular K-means method. The estimation of the sampling distribution of the adjusted Rand index (ARI) and the averaged Jaccard index seems to be the most general way to do this. In addition, we compare bootstrapping with different subsampling schemes (i.e., with different cardinality of the drawn samples) with respect to their performance in finding the true number of clusters for both synthetic and real data.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9762
dc.identifier.urihttps://doi.org/10.34657/8800
dc.language.isoengeng
dc.publisherKarlsruhe : KIT Scientific Publishingeng
dc.relation.doihttps://doi.org/10.5445/KSP/1000058747/02
dc.relation.essn2363-9881
dc.relation.urnurn:nbn:de:swb:90-677602
dc.rights.licenseCC BY-SA 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/eng
dc.subject.ddc510eng
dc.titleAssessment of Stability in Partitional Clustering Using Resampling Techniqueseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
adsa_1-1_article02.pdf
Size:
2.41 MB
Format:
Adobe Portable Document Format
Description:
Collections