Determination of tip transfer function for quantitative MFM using frequency domain filtering and least squares method

dc.bibliographicCitation.firstPage3880eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.lastPage842eng
dc.bibliographicCitation.volume9eng
dc.contributor.authorNečas, D.
dc.contributor.authorKlapetek, P.
dc.contributor.authorNeu, V.
dc.contributor.authorHavlíček, M.
dc.contributor.authorPuttock, R.
dc.contributor.authorKazakova, O.
dc.contributor.authorHu, X.
dc.contributor.authorZajíčková, L.
dc.date.accessioned2020-07-18T06:12:43Z
dc.date.available2020-07-18T06:12:43Z
dc.date.issued2019
dc.description.abstractMagnetic force microscopy has unsurpassed capabilities in analysis of nanoscale and microscale magnetic samples and devices. Similar to other Scanning Probe Microscopy techniques, quantitative analysis remains a challenge. Despite large theoretical and practical progress in this area, present methods are seldom used due to their complexity and lack of systematic understanding of related uncertainties and recommended best practice. Use of the Tip Transfer Function (TTF) is a key concept in making Magnetic Force Microscopy measurements quantitative. We present a numerical study of several aspects of TTF reconstruction using multilayer samples with perpendicular magnetisation. We address the choice of numerical approach, impact of non-periodicity and windowing, suitable conventions for data normalisation and units, criteria for choice of regularisation parameter and experimental effects observed in real measurements. We present a simple regularisation parameter selection method based on TTF width and verify this approach via numerical experiments. Examples of TTF estimation are shown on both 2D and 3D experimental datasets. We give recommendations on best practices for robust TTF estimation, including the choice of windowing function, measurement strategy and dealing with experimental error sources. A method for synthetic MFM data generation, suitable for large scale numerical experiments is also presented.eng
dc.description.sponsorshipLeibniz_Fondseng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3648
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5019
dc.language.isoengeng
dc.publisherLondon : Nature Publishing Groupeng
dc.relation.doihttps://doi.org/10.1038/s41598-019-40477-x
dc.relation.ispartofseriesScientific Reports 9 (2019), Nr. 1eng
dc.relation.issn2045-2322
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectarticleeng
dc.subjectexperimental erroreng
dc.subjectfiltrationeng
dc.subjectleast square analysiseng
dc.subjectmicroscopyeng
dc.subjectquantitative analysiseng
dc.subject.ddc530eng
dc.titleDetermination of tip transfer function for quantitative MFM using frequency domain filtering and least squares methodeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleScientific Reportseng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Necas et al 2019, Determination of tip transfer function for quantitative MFM using frequency.pdf
Size:
3.06 MB
Format:
Adobe Portable Document Format
Description:
Collections