Local Existence and Conditional Regularity for the Navier-Stokes-Fourier System Driven by Inhomogeneous Boundary Conditions

Loading...
Thumbnail Image

Date

Volume

10

Issue

Journal

Series Titel

Oberwolfach Preprints (OWP)

Book Title

Publisher

Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach

Link to publishers version

Abstract

We consider the Navier–Stokes–Fourier system with general inhomogeneous Dirichlet–Neumann boundary conditions. We propose a new approach to the local well-posedness problem based on conditional regularity estimates. By conditional regularity we mean that any strong solution belonging to a suitable class remains regular as long as its amplitude remains bounded. The result holds for general Dirichlet-Neumann boundary conditions provided the material derivative of the velocity field vanishes on the boundary of the physical domain. As a corollary of this result we obtain: Blow up criteria for strong solutions; Local existence of strong solutions in the optimal Lp - Lq framework; Alternative proof of the existing results on local well posedness.

Description

Keywords

License

Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.