Marginal density expansions for diffusions and stochastic volatility, part I: Theoretical foundations

No Thumbnail Available
Date
2011
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Cambridge : arXiv
Link to publishers version
Abstract

Density expansions for hypoelliptic diffusions (X1,...,Xd) are revisited. In particular, we are interested in density expansions of the projection (X1T,...,XlT), at time T>0, with l≤d. Global conditions are found which replace the well-known "not-in-cutlocus" condition known from heat-kernel asymptotics. Our small noise expansion allows for a "second order" exponential factor. As application, new light is shed on the Takanobu--Watanabe expansion of Brownian motion and Levy's stochastic area. Further applications include tail and implied volatility asymptotics in some stochastic volatility models, discussed in a compagnion paper.

Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.