Mini-Workshop: One-sided and Two-sided Stochastic Descriptions

dc.bibliographicCitation.firstPage601
dc.bibliographicCitation.lastPage637
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume11
dc.contributor.otherBethuelsen, Stein Andreas
dc.contributor.otherConache, Diana
dc.contributor.otherLe Ny, Arnaud
dc.date.accessioned2023-12-15T10:06:58Z
dc.date.available2023-12-15T10:06:58Z
dc.date.issued2020
dc.description.abstractWe consider the set of discrete time stochastic processes which are dependent on their past, and the set of those that depend on both their past and their future. As long as we only allow dependence on a finite number of variables, those two sets are the same. However interesting questions appear when the dependence becomes infinite, and some of them were discussed during our mini-workshop.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/13457
dc.identifier.urihttps://doi.org/10.34657/12487
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2020-11
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleMini-Workshop: One-sided and Two-sided Stochastic Descriptionseng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventMini-Workshop: One-sided and Two-sided Stochastic Descriptions, 23 Feb - 29 Feb 2020, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2020_11.pdf
Size:
465.59 KB
Format:
Adobe Portable Document Format
Description:
Collections