Arbeitsgemeinschaft: Minimal Surfaces

dc.bibliographicCitation.firstPage2545
dc.bibliographicCitation.lastPage2584
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume45
dc.contributor.otherWeber, Matthias
dc.date.accessioned2023-12-14T13:51:48Z
dc.date.available2023-12-14T13:51:48Z
dc.date.issued2009
dc.description.abstractThe theory of Minimal Surfaces has developed rapidly in the past 10 years. There are many factors that have contributed to this development: Sophisticated construction methods [14,29,31] have been developed and have supplied us with a wealth of examples which have provided intuition and spawned conjectures. Deep curvature estimates by Colding and Minicozzi [3] give control on the local and global behavior of minimal surfaces in an unprecedented way. Much progress has been made in classifying minimal surfaces of finite topology or low genus in ℝ3 or in other flat 3-manifolds. For instance, all properly embedded minimal surfaces of genus 0 in ℝ3, even those with an infinite number of ends, are now known [21, 23, 25]. There are still numerous difficult but easy to state open conjectures, like the genus-g helicoid conjecture: There exists a unique complete embedded minimal surface with one end and genus g for each g ∈ N, or the related Hoffman–Meeks conjecture: A finite topology surface with genus g and n ≥ 2 ends embeds minimally in ℝ3 with a complete metric if and only if n ≤ g + 2. Sophisticated tools from 3-manifold theory have been applied and generalized to understand the geometric and topological properties of properly embedded minimal surfaces in ℝ3. Minimal surfaces have had important applications in topology and play a prominent role in the larger context of geometric analysis.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/12860
dc.identifier.urihttps://doi.org/10.34657/11890
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2009-45
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleArbeitsgemeinschaft: Minimal Surfaceseng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventWorkshop Arbeitsgemeinschaft: Minimal Surfaces, 04 Oct - 09 Oct 2009, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2009_45.pdf
Size:
421.31 KB
Format:
Adobe Portable Document Format
Description: