The Kinetic Expansion of Solar-wind Electrons: Transport Theory and Predictions for the Very Inner Heliosphere

dc.bibliographicCitation.firstPage162
dc.bibliographicCitation.issue2
dc.bibliographicCitation.journalTitleThe astrophysical journal : an international review of spectroscopy and astronomical physics : Part 1eng
dc.bibliographicCitation.volume927
dc.contributor.authorJeong, Seong-Yeop
dc.contributor.authorVerscharen, Daniel
dc.contributor.authorVocks, Christian
dc.contributor.authorAbraham, Joel B.
dc.contributor.authorOwen, Christopher J.
dc.contributor.authorWicks, Robert T.
dc.contributor.authorFazakerley, Andrew N.
dc.contributor.authorStansby, David
dc.contributor.authorBerčič, Laura
dc.contributor.authorNicolaou, Georgios
dc.contributor.authorAgudelo Rueda, Jeffersson A.
dc.contributor.authorBakrania, Mayur
dc.date.accessioned2023-04-18T06:37:06Z
dc.date.available2023-04-18T06:37:06Z
dc.date.issued2022
dc.description.abstractWe propose a transport theory for the kinetic evolution of solar-wind electrons in the heliosphere. We derive a gyro-averaged kinetic transport equation that accounts for the spherical expansion of the solar wind and the geometry of the Parker spiral magnetic field. To solve our three-dimensional kinetic equation, we develop a mathematical approach that combines the Crank-Nicolson scheme in velocity space and a finite-difference Euler scheme in configuration space. We initialize our model with isotropic electron distribution functions and calculate the kinetic expansion at heliocentric distances from 5 to 20 solar radii. In our kinetic model, the electrons evolve mainly through the combination of ballistic particle streaming, the magnetic mirror force, and the electric field. By applying fits to our numerical results, we quantify the parameters of the electron strahl and the core part of the electron velocity distributions. The strahl fit parameters show that the density of the electron strahl is around 7% of the total electron density at a distance of 20 solar radii, the strahl bulk velocity and strahl temperature parallel to the background magnetic field stay approximately constant beyond a distance of 15 solar radii, and β s (i.e., the ratio of the strahl parallel thermal pressure to the magnetic pressure) is approximately constant with heliocentric distance at a value of about 0.02. We compare our results with data measured by the Parker Solar Probe. Furthermore, we provide theoretical evidence that the electron strahl is not scattered by the oblique fast-magnetosonic/whistler instability in the near-Sun environment.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11977
dc.identifier.urihttp://dx.doi.org/10.34657/11010
dc.language.isoeng
dc.publisherLondon : Institute of Physics Publ.
dc.relation.doihttps://doi.org/10.3847/1538-4357/ac4805
dc.relation.essn1538-4357
dc.relation.issn0004-637X
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc520
dc.subject.otherSolar windeng
dc.subject.otherSpace plasmaseng
dc.subject.otherHeliosphereeng
dc.subject.otherTheoretical modelseng
dc.titleThe Kinetic Expansion of Solar-wind Electrons: Transport Theory and Predictions for the Very Inner Heliosphereeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorAIP
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The_Kinetic_Expansion_of_Solar-wind_Electrons.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format
Description:
Collections