On the autonomous metric on the group of area-preserving diffeomorphisms of the 2-disc
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | eng |
dc.bibliographicCitation.volume | 2012-16 | |
dc.contributor.author | Brandenbursky, Michael | |
dc.date.available | 2019-06-28T08:03:12Z | |
dc.date.issued | 2012 | |
dc.description.abstract | Let D2 be the open unit disc in the Euclidean plane and let G := Diff(D2; area) be the group of smooth compactly supported area-preserving diffeomorphisms of D2. For every natural number k we construct an injective homomorphism Zk → G, which is bi-Lipschitz with respect to the word metric on Zk and the autonomous metric on G. We also show that the space of homogeneous quasi-morphisms vanishing on all autonomous diffeomorphisms in the above group is infinite dimensional. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 1864-7596 | |
dc.identifier.uri | https://doi.org/10.34657/2841 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/1997 | |
dc.language.iso | eng | eng |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | eng |
dc.relation.doi | https://doi.org/10.14760/OWP-2012-16 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.title | On the autonomous metric on the group of area-preserving diffeomorphisms of the 2-disc | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | MFO | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2012_16.pdf
- Size:
- 268.74 KB
- Format:
- Adobe Portable Document Format
- Description: