Mini-Workshop: New Developments in Newton-Okounov Bodies

Loading...
Thumbnail Image
Date
2011
Authors
Volume
41
Issue
Journal
Series Titel
Oberwolfach reports : OWR
Book Title
Publisher
Zürich : EMS Publ. House
Link to publishers version
Abstract

The theory of Newton-Okounkov bodies, also called Okounkov bodies, is a new connection between algebraic geometry and convex geometry. It generalizes the well-known and extremely rich correspondence between geometry of toric varieties and combinatorics of convex integral polytopes. Okounkov bodies were first introduced by Andrei Okounkov, in a construction motivated by a question of Khovanskii concerning convex bodies govering the multiplicities of representations. Recently, Kaveh-Khovanskii and Lazarsfeld-Mustata have generalized and systematically developed Okounkov’s construction, showing the existence of convex bodies which capture much of the asymptotic information about the geometry of ($X,D$) where $X$ is an algebraic variety and $D$ is a big divisor. The study of Okounkov bodies is a new research area with many open questions. The goal of this mini-workshop was to bring together a core group of algebraic/symplectic geometers currently working on this topic to establish the groundwork for future development of this area.

Description
Keywords
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.