Bounded-hop percolation
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
Motivated by an application in wireless telecommunication networks, we consider a two-type continuum-percolation problem involving a homogeneous Poisson point process of users and a stationary and ergodic point process of base stations. Starting from a randomly chosen point of the Poisson point process,we investigate distribution of the minimum number of hops that are needed to reach some point of the second point process.In the supercritical regime of continuum percolation, we use the close relationship between Euclidean and chemical distance to identify the distributional limit of the rescaled minimum number of hops that are needed to connect a typical Poisson point to a point of the second point process as its intensity tends to infinity. In particular, we obtain an explicit expression for the asymptotic probability that a typical Poisson point connects to a point of the second point process in a given number of hops.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.