Cubature on Wiener space in infinite dimension

dc.contributor.authorBayer, Christian
dc.contributor.authorTeichmann, Josef
dc.date.accessioned2016-05-18T05:42:00Z
dc.date.available2019-06-28T08:23:44Z
dc.date.issued2007
dc.description.abstractWe prove a stochastic Taylor expansion for SPDEs and apply this result to obtain cubature methods, i. e. high order weak approximation schemes for SPDEs, in the spirit of T. Lyons and N. Victoir. We can prove a high-order weak convergence for well-defined classes of test functions if the process starts at sufficiently regular initial values. We can also derive analogous results in the presence of L\'evy processes of finite type, here the results seem to be new even in finite dimension. Several numerical examples are added.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3374
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/abs/0712.3763v2
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.titleCubature on Wiener space in infinite dimensioneng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections