This item is non-discoverable
Cubature on Wiener space in infinite dimension
dc.contributor.author | Bayer, Christian | |
dc.contributor.author | Teichmann, Josef | |
dc.date.accessioned | 2016-05-18T05:42:00Z | |
dc.date.available | 2019-06-28T08:23:44Z | |
dc.date.issued | 2007 | |
dc.description.abstract | We prove a stochastic Taylor expansion for SPDEs and apply this result to obtain cubature methods, i. e. high order weak approximation schemes for SPDEs, in the spirit of T. Lyons and N. Victoir. We can prove a high-order weak convergence for well-defined classes of test functions if the process starts at sufficiently regular initial values. We can also derive analogous results in the presence of L\'evy processes of finite type, here the results seem to be new even in finite dimension. Several numerical examples are added. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/3374 | |
dc.language.iso | eng | eng |
dc.publisher | Cambridge : arXiv | eng |
dc.relation.uri | http://arxiv.org/abs/0712.3763v2 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.title | Cubature on Wiener space in infinite dimension | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |