The Elser Nuclei Sum Revisited

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)
dc.bibliographicCitation.volume5
dc.contributor.authorGrinberg, Darij
dc.date.accessioned2024-10-16T17:02:24Z
dc.date.available2024-10-16T17:02:24Z
dc.date.issued2021
dc.description.abstractFix a finite undirected graph Γ and a vertex v of Γ. Let E be the set of edges of Γ. We call a subset F of E pandemic if each edge of Γ has at least one endpoint that can be connected to v by an F-path (i.e., a path using edges from F only). In 1984, Elser showed that the sum of (−1)|F| over all pandemic subsets F of E is 0 if E≠∅. We give a simple proof of this result via a sign-reversing involution, and discuss variants, generalizations and a refinement using discrete Morse theory.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16952
dc.identifier.urihttps://doi.org/10.34657/15974
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2021-05
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.subject.otherGraph theory
dc.subject.otherNuclei
dc.subject.otherSimplicial complex
dc.subject.otherDiscrete Morse theory
dc.subject.otherAlternating sum
dc.subject.otherEnumerative combinatorics
dc.subject.otherInclusion/ exclusion
dc.subject.otherConvexity
dc.titleThe Elser Nuclei Sum Revisited
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2021_05.pdf
Size:
492.61 KB
Format:
Adobe Portable Document Format
Description: