The Elser Nuclei Sum Revisited
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | |
dc.bibliographicCitation.volume | 5 | |
dc.contributor.author | Grinberg, Darij | |
dc.date.accessioned | 2024-10-16T17:02:24Z | |
dc.date.available | 2024-10-16T17:02:24Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Fix a finite undirected graph Γ and a vertex v of Γ. Let E be the set of edges of Γ. We call a subset F of E pandemic if each edge of Γ has at least one endpoint that can be connected to v by an F-path (i.e., a path using edges from F only). In 1984, Elser showed that the sum of (−1)|F| over all pandemic subsets F of E is 0 if E≠∅. We give a simple proof of this result via a sign-reversing involution, and discuss variants, generalizations and a refinement using discrete Morse theory. | |
dc.description.version | publishedVersion | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/16952 | |
dc.identifier.uri | https://doi.org/10.34657/15974 | |
dc.language.iso | eng | |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | |
dc.relation.doi | https://doi.org/10.14760/OWP-2021-05 | |
dc.relation.issn | 1864-7596 | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | |
dc.subject.ddc | 510 | |
dc.subject.other | Graph theory | |
dc.subject.other | Nuclei | |
dc.subject.other | Simplicial complex | |
dc.subject.other | Discrete Morse theory | |
dc.subject.other | Alternating sum | |
dc.subject.other | Enumerative combinatorics | |
dc.subject.other | Inclusion/ exclusion | |
dc.subject.other | Convexity | |
dc.title | The Elser Nuclei Sum Revisited | |
dc.type | Report | |
dc.type | Text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2021_05.pdf
- Size:
- 492.61 KB
- Format:
- Adobe Portable Document Format
- Description: