Space-Time Euler Discretization Schemes for the Stochastic 2D Navier-Stokes Equations
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | |
dc.bibliographicCitation.volume | 12 | |
dc.contributor.author | Bessaih, Hakima | |
dc.contributor.author | Millet, Annie | |
dc.date.accessioned | 2024-10-16T16:53:56Z | |
dc.date.available | 2024-10-16T16:53:56Z | |
dc.date.issued | 2020 | |
dc.description.abstract | We prove that the implicit time Euler scheme coupled with finite elements space discretization for the 2D Navier-Stokes equations on the torus subject to a random perturbation converges in L²(Ω), and describe the rate of convergence for an H¹-valued initial condition. This refines previous results which only established the convergence in probability of these numerical approximations. Using exponential moment estimates of the solution of the stochastic Navier-Stokes equations and convergence of a localized scheme, we can prove strong convergence of this space-time approximation. The speed of the L²(Ω)-convergence depends on the diffusion coefficient and on the viscosity parameter. In case of Scott-Vogelius mixed elements and for an additive noise, the convergence is polynomial. | |
dc.description.version | publishedVersion | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/16929 | |
dc.identifier.uri | https://doi.org/10.34657/15951 | |
dc.language.iso | eng | |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | |
dc.relation.doi | https://doi.org/10.14760/OWP-2020-12 | |
dc.relation.issn | 1864-7596 | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | |
dc.subject.ddc | 510 | |
dc.subject.other | Stochastic Navier-Stokes equations | |
dc.subject.other | Euler schemes | |
dc.subject.other | Finite elements | |
dc.subject.other | Strong convergence | |
dc.subject.other | Implicit time discretization | |
dc.subject.other | Exponential moments | |
dc.title | Space-Time Euler Discretization Schemes for the Stochastic 2D Navier-Stokes Equations | |
dc.type | Report | |
dc.type | Text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2020_12.pdf
- Size:
- 632.75 KB
- Format:
- Adobe Portable Document Format
- Description: