Arbeitsgemeinschaft: Elliptic Cohomology according to Lurie

dc.bibliographicCitation.firstPage911
dc.bibliographicCitation.lastPage1001
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume15
dc.contributor.otherLurie, Jacob
dc.contributor.otherNikolaus, Thomas
dc.date.accessioned2023-12-15T10:06:48Z
dc.date.available2023-12-15T10:06:48Z
dc.date.issued2019
dc.description.abstractIn this collection we give an overview of Jacob Lurie's construction of elliptic cohomology and Lubin Tate theory. As opposed to the original construction by Goerss-Hopkins-Miller, which uses heavy obstruction theory, Lurie constructs these objects by a moduli problem in spectral algebraic geometry. A major part of this text is devoted to the foundations and background in higher algebra needed to set up this moduli problem (in the case of Lubin Tate theory) and prove that it is representable.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/13399
dc.identifier.urihttps://doi.org/10.34657/12429
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2019-15
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleArbeitsgemeinschaft: Elliptic Cohomology according to Lurieeng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventWorkshop Arbeitsgemeinschaft: Elliptic Cohomology according to Lurie, , Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2019_15.pdf
Size:
797.32 KB
Format:
Adobe Portable Document Format
Description: