Numerical Methods for PDE Constrained Optimization with Uncertain Data

dc.bibliographicCitation.firstPage239
dc.bibliographicCitation.lastPage293
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume4
dc.contributor.otherSchulz, Volker
dc.date.accessioned2023-12-15T09:05:08Z
dc.date.available2023-12-15T09:05:08Z
dc.date.issued2013
dc.description.abstractOptimization problems governed by partial differential equations (PDEs) arise in many applications in the form of optimal control, optimal design, or parameter identification problems. In most applications, parameters in the governing PDEs are not deterministic, but rather have to be modeled as random variables or, more generally, as random fields. It is crucial to capture and quantify the uncertainty in such problems rather than to simply replace the uncertain coefficients with their mean values. However, treating the uncertainty adequately and in a computationally tractable manner poses many mathematical challenges. The numerical solution of optimization problems governed by stochastic PDEs builds on mathematical subareas, which so far have been largely investigated in separate communities: Stochastic Programming, Numerical Solution of Stochastic PDEs, and PDE Constrained Optimization. The workshop achieved an impulse towards cross-fertilization of those disciplines which also was the subject of several scientific discussions. It is to be expected that future exchange of ideas between these areas will give rise to new insights and powerful new numerical methods.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/13086
dc.identifier.urihttps://doi.org/10.34657/12116
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2013-4
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleNumerical Methods for PDE Constrained Optimization with Uncertain Dataeng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventWorkshop Numerical Methods for PDE Constrained Optimization with Uncertain Data, 27 Jan - 02 Feb 2013, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2013_04.pdf
Size:
510.11 KB
Format:
Adobe Portable Document Format
Description: