Option pricing in affine generalized Merton models

dc.contributor.authorBayer, Christian
dc.contributor.authorSchoenmakers, John
dc.date.available2019-06-28T08:25:25Z
dc.date.issued2015
dc.description.abstractIn this article we consider affine generalizations of the Merton jump diffusion model [Merton, J. Fin. Econ., 1976] and the respective pricing of European options. On the one hand, the Brownian motion part in the Merton model may be generalized to a log-Heston model, and on the other hand, the jump part may be generalized to an affine process with possibly state dependent jumps. While the characteristic function of the log-Heston component is known in closed form, the characteristic function of the second component may be unknown explicitly. For the latter component we propose an approximation procedure based on the method introduced in [Belomestny et al., J. Func. Anal., 2009]. We conclude with some numerical examples.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3444
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/abs/1512.03677v1
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherAffine processeseng
dc.subject.otherMerton jump-modeleng
dc.subject.otherapproximate affine characteristic functioneng
dc.titleOption pricing in affine generalized Merton modelseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections