On the Lie Algebra Structure of HH¹(A) of a Finite-Dimensional Algebra A
Loading...
Date
2019
Volume
10
Issue
Journal
Series Titel
Oberwolfach Preprints (OWP)
Book Title
Publisher
Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach
Link to publishers version
Abstract
Let A be a split finite-dimensional associative unital algebra over a field. The first main result of this note shows that if the Ext-quiver of A is a simple directed graph, then HH¹(A) is a solvable Lie algebra. The second main result shows that if the Ext-quiver of A has no loops and at most two parallel arrows in any direction, and if HH¹(A) is a simple Lie algebra, then char(k) is not equal to 2 and HH¹(A)≅ sl2(k). The third result investigates symmetric algebras with a quiver which has a vertex with a single loop.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.