Quantification of Trace-Level Silicon Doping in Al x Ga1-xN Films Using Wavelength-Dispersive X-Ray Microanalysis

dc.bibliographicCitation.firstPage696eng
dc.bibliographicCitation.issue4eng
dc.bibliographicCitation.lastPage704eng
dc.bibliographicCitation.volume27eng
dc.contributor.authorSpasevski, Lucia
dc.contributor.authorBuse, Ben
dc.contributor.authorEdwards, Paul R.
dc.contributor.authorHunter, Daniel A.
dc.contributor.authorEnslin, Johannes
dc.contributor.authorForonda, Humberto M.
dc.contributor.authorWernicke, Tim
dc.contributor.authorMehnke, Frank
dc.contributor.authorParbrook, Peter J.
dc.contributor.authorKneissl, Michael
dc.contributor.authorMartin, Robert W.
dc.date.accessioned2022-03-29T09:18:31Z
dc.date.available2022-03-29T09:18:31Z
dc.date.issued2021
dc.description.abstractWavelength-dispersive X-ray (WDX) spectroscopy was used to measure silicon atom concentrations in the range 35–100 ppm [corresponding to (3–9) × 1018 cm−3] in doped AlxGa1–xN films using an electron probe microanalyser also equipped with a cathodoluminescence (CL) spectrometer. Doping with Si is the usual way to produce the n-type conducting layers that are critical in GaN- and AlxGa1–xN-based devices such as LEDs and laser diodes. Previously, we have shown excellent agreement for Mg dopant concentrations in p-GaN measured by WDX with values from the more widely used technique of secondary ion mass spectrometry (SIMS). However, a discrepancy between these methods has been reported when quantifying the n-type dopant, silicon. We identify the cause of discrepancy as inherent sample contamination and propose a way to correct this using a calibration relation. This new approach, using a method combining data derived from SIMS measurements on both GaN and AlxGa1–xN samples, provides the means to measure the Si content in these samples with account taken of variations in the ZAF corrections. This method presents a cost-effective and time-saving way to measure the Si doping and can also benefit from simultaneously measuring other signals, such as CL and electron channeling contrast imaging.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8428
dc.identifier.urihttps://doi.org/10.34657/7466
dc.language.isoengeng
dc.publisherNew York, NY : Cambridge University Presseng
dc.relation.doihttps://doi.org/10.1017/S1431927621000568
dc.relation.essn1435-8115
dc.relation.ispartofseriesMicroscopy and microanalysis : the official journal of the Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada 27 (2021), Nr. 4eng
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectKey words electron probe microanalysiseng
dc.subjectsecondary ion mass spectrometryeng
dc.subjectsemiconductor analysiseng
dc.subjectsilicon dopingeng
dc.subjecttrace-element analysiseng
dc.subject.ddc570eng
dc.titleQuantification of Trace-Level Silicon Doping in Al x Ga1-xN Films Using Wavelength-Dispersive X-Ray Microanalysiseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleMicroscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canadaeng
tib.accessRightsopenAccesseng
wgl.contributorFBHeng
wgl.subjectBiowissensschaften/Biologieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Quantification_of_Trace-Level_Silicon.pdf
Size:
607.5 KB
Format:
Adobe Portable Document Format
Description: