Maximal Regularity for Non-autonomous Equations with Measurable Dependence on Time

Loading...
Thumbnail Image

Date

Volume

46

Issue

3

Journal

Potential analysis : an international journal devoted to the interactions between potential theory, probability theory, geometry and functional analysis

Series Titel

Book Title

Publisher

Dordrecht [u.a.] : Springer Science + Business Media B.V

Abstract

In this paper we study maximal L p-regularity for evolution equations with time-dependent operators A. We merely assume a measurable dependence on time. In the first part of the paper we present a new sufficient condition for the L p-boundedness of a class of vector-valued singular integrals which does not rely on Hörmander conditions in the time variable. This is then used to develop an abstract operator-theoretic approach to maximal regularity. The results are applied to the case of m-th order elliptic operators A with time and space-dependent coefficients. Here the highest order coefficients are assumed to be measurable in time and continuous in the space variables. This results in an L p(L q)-theory for such equations for p,q∈(1,∞). In the final section we extend a well-posedness result for quasilinear equations to the time-dependent setting. Here we give an example of a nonlinear parabolic PDE to which the result can be applied.

Description

Keywords

Collections

License

CC BY 4.0 Unported