The McKay conjecture for exceptional groups and odd primes
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
Let G be a simply-connected simple algebraic group over an algebraically closed field of characteristic p with a Frobenius map F : G ! G and G := GF , such that the root system is of exceptional type or G is a Suzuki-group or Steinberg’s triality group. We show that all irreducible characters of CG(S), the centraliser of S in G, extend to their inertia group in NG(S), where S is any F-stable Sylow torus of (G, F). Together with the work in [17] this implies that the McKay-conjecture is true for G and odd primes ` different from the defining characteristic. Moreover it shows important properties of the associated simple groups, which are relevant for the proof that the associated simple groups are good in the sense of Isaacs, Malle and Navarro, as defined in [15].
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.