Hölder Continuity of the Spectra for Aperiodic Hamiltonians

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)
dc.bibliographicCitation.volume5
dc.contributor.authorBeckus, Siegfried
dc.contributor.authorBellissard, Jean
dc.contributor.authorCornean, Horia
dc.date.accessioned2024-10-16T16:43:30Z
dc.date.available2024-10-16T16:43:30Z
dc.date.issued2019
dc.description.abstractWe study the spectral location of a strongly pattern equivariant Hamiltonians arising through configurations on a colored lattice. Roughly speaking, two configurations are "close to each other" if, up to a translation, they "almost coincide" on a large fixed ball. The larger this ball is, the more similar they are, and this induces a metric on the space of the corresponding dynamical systems. Our main result states that the map which sends a given configuration into the spectrum of its associated Hamiltonian, is Hölder (even Lipschitz) continuous in the usual Hausdorff metric. Specifically, the spectral distance of two Hamiltonians is estimated by the distance of the corresponding dynamical systems.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16920
dc.identifier.urihttps://doi.org/10.34657/15942
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2019-05
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.titleHölder Continuity of the Spectra for Aperiodic Hamiltonians
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2019_05.pdf
Size:
543.52 KB
Format:
Adobe Portable Document Format
Description: