Convergence rates for the full Gaussian rough paths

dc.contributor.authorFriz, Peter
dc.contributor.authorRiedel, Sebastian
dc.date.accessioned2016-06-28T05:45:31Z
dc.date.available2019-06-28T08:21:49Z
dc.date.issued2011
dc.description.abstractUnder the key assumption of finite p-variation, 2 [1; 2), of the covariance of the underlying Gaussian process, sharp a.s. convergence rates for approximations of Gaussian rough paths are established. When applied to Brownian resp. fractional Brownian motion (fBM), p = 1 resp. p = 1 p= (2H), we recover and extend the respective results of [Hu{Nualart; Rough path analysis via fractional calculus; TAMS 361 (2009) 2689-2718] and [Deya{Neuenkirch{Tindel; A Milstein-type scheme without Lévy area terms for SDEs driven by fractional Brownian motion; AIHP (2011)]. In particular, we establish an a.s. rate k (1 1=2"), any > 0, for Wong- Zakai and Milstein-type approximations with mesh-size 1=k. When applied to fBM this answers a conjecture in the afore-mentioned references.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3304
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/abs/1108.1099
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.titleConvergence rates for the full Gaussian rough pathseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections