Electronic states in semiconductor nanostructures and upscaling to semi-classical models

Loading...
Thumbnail Image
Date
2006
Volume
1133
Issue
Journal
Series Titel
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

In semiconductor devices one basically distinguishes three spatial scales: The atomistic scale of the bulk semiconductor materials (sub-Angstroem), the scale of the interaction zone at the interface between two semiconductor materials together with the scale of the resulting size quantization (nanometer) and the scale of the device itself (micrometer). The paper focuses on the two scale transitions inherent in the hierarchy of scales in the device. We start with the description of the band structure of the bulk material by kp Hamiltonians on the atomistic scale. We describe how the envelope function approximation allows to construct kp Schroedinger operators describing the electronic states at the nanoscale which are closely related to the kp Hamiltonians. Special emphasis is placed on the possible existence of spurious modes in the kp Schroedinger model on the nanoscale which are inherited from anomalous band bending on the atomistic scale. We review results of the mathematical analysis of these multi-band kp Schroedinger operators. Besides of the confirmation of the main facts about the band structure usually taken for granted ...

Description
Keywords
Semiconductor nanostructures, kp method, electronic states, band structure, semiclassical models, upscaling, quantum wells, semiconductor lasers
Citation
Koprucki, T., Kaiser, H.-C., & Fuhrmann, J. (2006). Electronic states in semiconductor nanostructures and upscaling to semi-classical models (Vol. 1133). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik.
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.