Varadhan's formula, conditioned diffusions, and local volatilities

dc.contributor.authorDe Marco, Stefano
dc.contributor.authorFriz, Peter
dc.date.accessioned2016-06-24T05:45:10Z
dc.date.available2019-06-28T08:09:47Z
dc.date.issued2013
dc.description.abstractMotivated by marginals-mimicking results for It\^o processes via SDEs and by their applications to volatility modeling in finance, we discuss the weak convergence of the law of a hypoelliptic diffusions conditioned to belong to a target affine subspace at final time, namely L(Zt|Yt=y) if X⋅=(Y⋅,Z⋅). To do so, we revisit Varadhan-type estimates in a small-noise regime (as opposed to small-time), studying the density of the lower-dimensional component Y. The application to stochastic volatility models include the small-time and, for certain models, the large-strike asymptotics of the Gyongy-Dupire's local volatility function. The final product are asymptotic formulae that can (i) motivate parameterizations of the local volatility surface and (ii) be used to extrapolate local volatilities in a given modeleng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2675
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/abs/1311.1545
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherConditional density asymptoticseng
dc.subject.otherlocal volatilityeng
dc.subject.otherstochastic volatilityeng
dc.subject.otherlarge deviationseng
dc.titleVaradhan's formula, conditioned diffusions, and local volatilitieseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections