Assessing the contribution of soil NOx emissions to European atmospheric pollution

dc.bibliographicCitation.firstPage025009
dc.bibliographicCitation.issue2
dc.bibliographicCitation.journalTitleEnvironmental research letters : ERLeng
dc.bibliographicCitation.volume16
dc.contributor.authorSkiba, Ute
dc.contributor.authorMedinets, Sergiy
dc.contributor.authorCardenas, Laura M.
dc.contributor.authorCarnell, Edward John
dc.contributor.authorHutchings, Nick
dc.contributor.authorAmon, Barbara
dc.date.accessioned2022-12-02T09:19:51Z
dc.date.available2022-12-02T09:19:51Z
dc.date.issued2021
dc.description.abstractAtmospheric NOx concentrations are declining steadily due to successful abatement strategies predominantly targeting combustion sources. On the European continent, total NOx emissions fell by 55% between 1990 and 2017, but only modest reductions were achieved from the agricultural sector; with 7.8% from 20 Eastern European countries and 19.1% from 22 Western European countries. Consequently, the share of agricultural NOx emissions for these 42 European countries have increased from 3.6% to 7.2%. These values are highly uncertain due to serious lack of studies from agricultural soils and manure management. The emission factor (EFNO 1.33%), currently used for calculating soil NOx emissions from European agricultural categories ‘N applied to soils’ and ‘manure management’ was evaluated here by including recently published data from temperate climate zones. The newly calculated EFNO (average 0.60%, 0.0625th%/0.5475th%, n = 65 studies) is not notably different from the current value, given the large uncertainties associated with the small pool of studies, and therefore continued use of EFNO (1.33%) is recommended until more data become available. An assessment of the contribution of agricultural and non-agricultural NOx sources found that of the 42 European countries, the 8 most populated countries achieved considerable reductions (1990–2017) from categories ‘non-agricultural sources’ (55%), ‘N applied to soils’ (43%) and ‘manure management’ (1.2%), compared to small reductions from the remaining 34 countries. Forests are also large sources of soil NOx. On average, emissions from Eastern European forests were 4 times larger than from ‘N applied agricultural soil’, whereas Western European NOx emissions from ‘N applied agricultural soil’ were two times larger than from forest soils. Given that non-agricultural sources of NOx continue to decline, soil related emissions from agriculture, forests and manure management become more important, and require rigorous investigation in order to improve atmospheric pollution forecasts.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10471
dc.identifier.urihttp://dx.doi.org/10.34657/9507
dc.language.isoeng
dc.publisherBristol : IOP Publ.
dc.relation.doihttps://doi.org/10.1088/1748-9326/abd2f2
dc.relation.essn1748-9326
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc690
dc.subject.otherAgricultureeng
dc.subject.otherEmission factoreng
dc.subject.otherForesteng
dc.subject.otherManureeng
dc.subject.otherNitric oxideeng
dc.subject.otherSoileng
dc.titleAssessing the contribution of soil NOx emissions to European atmospheric pollutioneng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorATB
wgl.subjectUmweltwissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Assessing_the_contribution.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
Description: