Surface brightness-colour relations of dwarf stars from detached eclipsing binaries: I. Calibrating sample

dc.bibliographicCitation.firstPageA128
dc.bibliographicCitation.volume666
dc.contributor.authorGraczyk, D.
dc.contributor.authorPietrzyński, G.
dc.contributor.authorGalan, C.
dc.contributor.authorSouthworth, J.
dc.contributor.authorGieren, W.
dc.contributor.authorKałuszyński, M.
dc.contributor.authorZgirski, B.
dc.contributor.authorGallenne, A.
dc.contributor.authorGórski, M.
dc.contributor.authorHajdu, G.
dc.contributor.authorKarczmarek, P.
dc.contributor.authorKervella, P.
dc.contributor.authorMaxted, P. F. L.
dc.contributor.authorNardetto, N.
dc.contributor.authorNarloch, W.
dc.contributor.authorPilecki, B.
dc.contributor.authorPych, W.
dc.contributor.authorRojas Garcia, G.
dc.contributor.authorStorm, J.
dc.contributor.authorSuchomska, K.
dc.contributor.authorTaormina, M.
dc.contributor.authorWielgórski, P.
dc.date.accessioned2023-02-06T08:02:53Z
dc.date.available2023-02-06T08:02:53Z
dc.date.issued2022
dc.description.abstractAims. Surface brightness - colour relations (SBCRs) are very useful tools for predicting the angular diameters of stars. They offer the possibility to calculate very precise spectrophotometric distances by the eclipsing binary method or the Baade-Wesselink method. Double-lined Detached Eclipsing Binary stars (SB2 DEBs) with precisely known trigonometric parallaxes allow for a calibration of SBCRs with unprecedented precision. In order to improve such calibrations, it is important to enlarge the calibration sample of suitable eclipsing binaries with very precisely determined physical parameters. Methods. We carefully chose a sample of ten SB2 DEBs in the solar neighbourhood which contain inactive main-sequence components. The components have spectral types from early A to early K. All systems have high-precision parallaxes from the Gaia mission. We analysed high precision ground- and space-based photometry simultaneously with the radial velocity curves derived from HARPS spectra. We used spectral disentangling to obtain the individual spectra of the components and used these to derive precise atmospheric parameters and chemical abundances. For almost all components, we derived precise surface temperatures and metallicities. Results. We derived absolute dimensions for 20 stars with an average precision of 0.2% and 0.5% for masses and radii, respectively. Three systems show slow apsidal motion. One system, HD 32129, is most likely a triple system with a much fainter K6V companion. Also three systems contain metallic-line components and show strong enhancements of barium and ittrium. Conclusions. The components of all systems compare well to the SBCR derived before from the detached eclipsing binary stars. With a possible exception of HD 32129, they can be used to calibrate SBCRs with a precision better than 1% with available Gaia DR3 parallaxes.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11250
dc.identifier.urihttp://dx.doi.org/10.34657/10286
dc.language.isoeng
dc.publisherLes Ulis : EDP Sciences
dc.relation.doihttps://doi.org/10.1051/0004-6361/202244122
dc.relation.essn1432-0746
dc.relation.ispartofseriesAstronomy & Astrophysics 666 (2022)eng
dc.relation.issn0004-6361
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectBinaries: eclipsingeng
dc.subjectBinaries: spectroscopiceng
dc.subjectStars: distanceseng
dc.subjectStars: fundamental parameterseng
dc.subject.ddc520
dc.titleSurface brightness-colour relations of dwarf stars from detached eclipsing binaries: I. Calibrating sampleeng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleAstronomy & Astrophysics
tib.accessRightsopenAccess
wgl.contributorAIP
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
aa44122-22.pdf
Size:
4.36 MB
Format:
Adobe Portable Document Format
Description:
Collections