Higher finiteness properties of reductive arithmetic groups in positive characteristic: The rank theorem

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2011-05
dc.contributor.authorBux, Kai-Uwe
dc.contributor.authorGramlich, Ralf
dc.contributor.authorWitzel, Stefan
dc.date.available2019-06-28T08:02:06Z
dc.date.issued2011
dc.description.abstractWe show that the finiteness length of an S-arithmetic subgroup Gamma in a noncommutative isotropic absolutely almost simple group G over a global function field is one less than the sum of the local ranks of G taken over the places in S. This determines the finiteness properties for arithmetic subgroups in isotropic reductive groups, confirming the conjectured finiteness properties for this class of groups. Our main tool is Behr-Harder reduction theory which we recast in terms of the metric structure of euclidean buildings.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/2485
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/1716
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2011-05
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.titleHigher finiteness properties of reductive arithmetic groups in positive characteristic: The rank theoremeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2011_05.pdf
Size:
597.8 KB
Format:
Adobe Portable Document Format
Description: