Embedding Spaces of Split Links
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | |
dc.bibliographicCitation.volume | 13 | |
dc.contributor.author | Boyd, Rachael | |
dc.contributor.author | Bregman, Corey | |
dc.date.accessioned | 2024-10-17T05:34:09Z | |
dc.date.available | 2024-10-17T05:34:09Z | |
dc.date.issued | 2022 | |
dc.description.abstract | We study the homotopy type of the space E(L) of unparametrised embeddings of a split link L=L1⊔…⊔Ln in R³. Inspired by work of Brendle and Hatcher, we introduce a semi-simplicial space of separating systems and show that this is homotopy equivalent to E(L). This combinatorial object provides a gateway to studying the homotopy type of E(L) via the homotopy type of the spaces E(Li). We apply this tool to find a simple description of the fundamental group, or motion group, of E(L), and extend this to a description of the motion group of embeddings in S³. | |
dc.description.version | publishedVersion | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/16962 | |
dc.identifier.uri | https://doi.org/10.34657/15984 | |
dc.language.iso | eng | |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | |
dc.relation.doi | https://doi.org/10.14760/OWP-2022-13 | |
dc.relation.issn | 1864-7596 | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | |
dc.subject | Embedding spaces | |
dc.subject | Homotopy type | |
dc.subject | Semi-simplicial spaces | |
dc.subject | Split links | |
dc.subject | Motion groups | |
dc.subject.ddc | 510 | |
dc.title | Embedding Spaces of Split Links | |
dc.type | Report | |
dc.type | Text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2022_13.pdf
- Size:
- 730.93 KB
- Format:
- Adobe Portable Document Format
- Description: