Embedding Spaces of Split Links

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)
dc.bibliographicCitation.volume13
dc.contributor.authorBoyd, Rachael
dc.contributor.authorBregman, Corey
dc.date.accessioned2024-10-17T05:34:09Z
dc.date.available2024-10-17T05:34:09Z
dc.date.issued2022
dc.description.abstractWe study the homotopy type of the space E(L) of unparametrised embeddings of a split link L=L1⊔…⊔Ln in R³. Inspired by work of Brendle and Hatcher, we introduce a semi-simplicial space of separating systems and show that this is homotopy equivalent to E(L). This combinatorial object provides a gateway to studying the homotopy type of E(L) via the homotopy type of the spaces E(Li). We apply this tool to find a simple description of the fundamental group, or motion group, of E(L), and extend this to a description of the motion group of embeddings in S³.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16962
dc.identifier.urihttps://doi.org/10.34657/15984
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2022-13
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subjectEmbedding spaces
dc.subjectHomotopy type
dc.subjectSemi-simplicial spaces
dc.subjectSplit links
dc.subjectMotion groups
dc.subject.ddc510
dc.titleEmbedding Spaces of Split Links
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2022_13.pdf
Size:
730.93 KB
Format:
Adobe Portable Document Format
Description: