Varieties of Signature Tensors
dc.bibliographicCitation.firstPage | e10 | eng |
dc.bibliographicCitation.journalTitle | Forum of Mathematics. Sigma | eng |
dc.bibliographicCitation.volume | 7 | eng |
dc.contributor.author | Améndola, Carlos | |
dc.contributor.author | Friz, Peter | |
dc.contributor.author | Sturmfels, Bernd | |
dc.date.accessioned | 2022-06-21T11:15:46Z | |
dc.date.available | 2022-06-21T11:15:46Z | |
dc.date.issued | 2019 | |
dc.description.abstract | The signature of a parametric curve is a sequence of tensors whose entries are iterated integrals. This construction is central to the theory of rough paths in stochastic analysis. It is examined here through the lens of algebraic geometry. We introduce varieties of signature tensors for both deterministic paths and random paths. For the former, we focus on piecewise linear paths, on polynomial paths, and on varieties derived from free nilpotent Lie groups. For the latter, we focus on Brownian motion and its mixtures. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/9098 | |
dc.identifier.uri | https://doi.org/10.34657/8136 | |
dc.language.iso | eng | eng |
dc.publisher | Cambridge : Cambridge Univ. Press | eng |
dc.relation.doi | https://doi.org/10.1017/fms.2019.3 | |
dc.relation.essn | 2050-5094 | |
dc.rights.license | CC BY 4.0 Unported | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | eng |
dc.subject.ddc | 510 | eng |
dc.subject.other | 14Q15 | eng |
dc.subject.other | 60H99 | eng |
dc.title | Varieties of Signature Tensors | eng |
dc.type | Article | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Zeitschriftenartikel | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Varieties_of_signature_tensors.pdf
- Size:
- 460.01 KB
- Format:
- Adobe Portable Document Format
- Description: