Structure-Preserving Discretizations for Nonlinear Systems of Hyperbolic, Involution-Constrained Partial Differential Equations on Manifolds
dc.bibliographicCitation.journalTitle | Oberwolfach reports : OWR | |
dc.bibliographicCitation.volume | 19 | |
dc.contributor.other | Castro, Manuel | |
dc.contributor.other | Després, Bruno | |
dc.contributor.other | Dumbser, Michael | |
dc.contributor.other | Klingenberg, Christian | |
dc.date.accessioned | 2024-10-17T12:12:47Z | |
dc.date.available | 2024-10-17T12:12:47Z | |
dc.date.issued | 2022 | |
dc.description.abstract | The topic of this workshop was the study of mathematical and numerical analysis for involution-constrained hyperbolic partial differential equations on manifolds. An example is the positivity of the density for the compressible Euler equations. 25 international participants attended the workshop. There were 22 lectures, covering a wide gamut of the topic. | |
dc.description.version | publishedVersion | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/17016 | |
dc.identifier.uri | https://doi.org/10.34657/16038 | |
dc.language.iso | eng | |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | |
dc.relation.doi | https://doi.org/10.14760/OWR-2022-19 | |
dc.relation.essn | 1660-8941 | |
dc.relation.issn | 1660-8933 | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | |
dc.subject.ddc | 510 | |
dc.subject.gnd | Konferenzschrift | |
dc.title | Structure-Preserving Discretizations for Nonlinear Systems of Hyperbolic, Involution-Constrained Partial Differential Equations on Manifolds | |
dc.type | Article | |
dc.type | Text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWR_2022_19.pdf
- Size:
- 4.43 MB
- Format:
- Adobe Portable Document Format
- Description: