Set Theory (online meeting)
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
Set theory continues to experience dramatic progress, both in pure set theory, with its fundamental techniques of forcing, large cardinals, and inner model theory, and in applied set theory, with its deep connections to other areas of mathematics. Specific topics include: (Pure Set Theory) Forcing axioms, iteration theorems for various classes of forcings, cardinal characteristics and descriptive set theory of the continuum and of generalized Baire spaces, HOD (the hereditarily ordinal definable sets), inner model theory and the core model induction, singular cardinal combinatorics and cardinal arithmetic (pcf theory), partition theorems, Borel reducibility; (Applied Set Theory) Borel and measurable combinatorics, structural Ramsey theory, set theory and operator algebras, topological dynamics and ergodic theory, set theory and Banach spaces, metric structures.
Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.