Typicalness of chaotic fractal behaviour of integral vortexes in Hamiltonian systems with discontinuous right hand side
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We consider a linear-quadratic deterministic optimal control problem where the control takes values in a two-dimensional simplex. The phase portrait of the optimal synthesis contains second-order singular extremals and exhibits modes of infinite accumulations of switchings in finite time, so-called chattering. We prove the presence of an entirely new phenomenon, namely the chaotic behaviour of bounded pieces of optimal trajectories. We find the hyperbolic domains in the neighbourhood of a homoclinic point and estimate the corresponding contraction-extension coefficients. This gives us the possibility to calculate the entropy and the Hausdorff dimension of the non-wandering set which appears to have a Cantor-like structure as in Smale's Horseshoe. The dynamics of the system is described by a topological Markov chain. In the second part it is shown that this behaviour is generic for piece-wise smooth Hamiltonian systems in the vicinity of a junction of three discontinuity hyper-surface strata.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.